Equivariant Verlinde formula from fivebranes and vortices

نویسنده

  • Sergei Gukov
چکیده

We study complex Chern-Simons theory on a Seifert manifold M3 by embedding it into string theory. We show that complex Chern-Simons theory on M3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between 1) the Verlinde algebra, 2) quantum cohomology of the Grassmannian, 3) Chern-Simons theory on Σ × S1 and 4) index of a spinc Dirac operator on the moduli space of flat connections to a new set of relations between 1) the “equivariant Verlinde algebra” for a complex group, 2) the equivariant quantum K-theory of vortex moduli spaces, 3) complex Chern-Simons theory on Σ × S1 and 4) the equivariant index of a spinc Dirac operator on the moduli space of Higgs bundles. CALT-TH-2014-171 ar X iv :1 50 1. 01 31 0v 1 [ he pth ] 6 J an 2 01 5

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Verlinde Formula for Higgs Bundles

We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of SU(n) proposed in [GP]. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks.

متن کامل

Fusion in the Extended Verlinde Algebra

The features of a usual conformal field theory were captured by the formalism of a tensor or fusion category. The notion of a Verlinde algebra which arises from a fusion category, the action of a modular group on the algebra, and the Verlinde formula gave us beautiful means to study these theories. Such they were that in [Ki] Kirillov put forth the notion of a G-equivariant fusion category so t...

متن کامل

Delocalized Equivariant Cohomology of Symmetric Products

For any closed complex manifold X, we calculate the Poincaré and Hodge polynomials of the delocalized equivariant cohomology H(X, Sn) with a grading specified by physicists. As a consequence, we recover a special case of a formula for the elliptic genera of symmetric products in DijkgraafMoore-Verlinde-Verlinde [8]. For a projective surface X, our results matches with the corresponding formulas...

متن کامل

Equivariant Kähler Geometry and Localization in the G/G Model

We analyze in detail the equivariant supersymmetry of the G/G model. In spite of the fact that this supersymmetry does not model the infinitesimal action of the group of gauge transformations, localization can be established by standard arguments. The theory localizes onto reducible connections and a careful evaluation of the fixed point contributions leads to an alternative derivation of the V...

متن کامل

Two Aspects of K Ahler Geometry in the G=g Model

The subject of this talk is the role of equivariant KK ahler geometry in the G=G model or, in other words, that of its equivariant supersymmetry. This supersym-metry is somewhat unusual in that it does not model the innnitesimal action of the group of gauge transformations. Nevertheless, this supersymmetry is useful on, at least, two counts. Firstly, it allows one to localise the path integral....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015